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S U M M A R Y  
The behaviour of discrete mechanical or electrical systems under the action of disturbances shall be weighted. In a 
space which contains the solutions of the corresponding differential equations appropriate norms are introduced. 
The optimal design problem can then be interpreted as an approximation problem for the zero solution. A method for 
the delivering from the initial conditions is proposed. 

1. Introduction 

Designing a mechanical or electrical system the first requirement is that of stability. This 
means that the perturbed system must go back to his equilibrium state or position. Beyond 
this it is desirable that the system behaves "as well as possible" under the actions of perturba- 
tions, it should reach its equilibrium state in shortest possible time, or the occurring amplitudes 
should be as small as possible and so on. In contrast to control problems where one compensates 
disturbances of a given system from without, the system in our problem stabilizes itself. It is 
the aim of this paper to give a systematic treatment and some mathematical aspects of the 
optimization problem in the above sense. 

2. Mathematical Preliminaries 

We recall the concept of a linear space [2]. This is a set with an associative and commutative 
addition and a multiplication with real numbers together with the usual distributive laws. 

In such spaces we consider norms, indicated as [I IP, this are functionals which obey the 
following rules : 

i) Ijall > 0 ,  Ilal] = 0  iff a = 0  

ii) Ileal[ = I~l'llalJ (1) 

iii) LLa+bLL < LLaLI + IIbLL . 

Here a and b are elements of the linear space, ~ is a real number. 
A linear space together with a norm is called a normed linear space. 
As examples we calt to mind the space R" of n-vectors a = (el, ez . . . . .  e,) where the following 

norms can be introduced: 

Ilal[v = ( [ ~ l [ V + . . . + [ % [ P )  lip , p = l ,  2, . . . .  (2) 

Hallo~= max [c~i[. (3) 
l <i<_n 

A further example is the space C [~, fl] of functions f continuous in the closed interval [~, fl] 
together with one of the norms 

]l f l i p  = If( t)]  pdt  , p = l ,  2, ... (2a) 

I l f l l~=  max I f ( t ) ] .  (3a) 
~t__</~ 
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Given r normed linear spaces L~ with norms I[ [[Li (i = 1, 2 . . . . .  r) it is possible to construct a new 
linear space L =  L 1 x L z x . . .  x Lr ,  the product space of L I ,  L z . . . . .  Lr .  The elements of L are 
r-tuples of elements from the spaces Li respectively. For example the space R" can be interpreted 
as the n-fold product of the linear space R, the space of real numbers. In analogy to R" one can 
introduce in L the norms 

LI.II~ = [( [lax [IL~)P+ ... + (I[a, IIL')P] lip , p=  1, 2, . . .  (2b) 

Ilall%-= max Ila,[I L' . (3b) 
l <=i<__r 

Here a~ is a element of L i  and a =(a~, az, ... at) denotes a element of the product space L. 
in a normed linear space infinitesimal operations can be carried out and the notions of 

convergence, completeness, continuity and so on are understood in the usual way, always with 
respect to the particular norm. 

3. Normed Linear Spaces and Discrete Systems 

Discrete mechanical or electrical systems are generally described through systems of ordinary 
differential equations. Every such system can be transformed to a first order system [1] 

~, = X i ( x t ,  x2 ,  . . . ,  x , ,  t) , i =  1, 2, . . . ,  n . (4) 

Besides there are initial conditions 

x~(t =0) = X~o. (5) 

We look now upon a space of which the solutions of these equations are elements. It is known 
from the theory of differential equations [i] that the solutions are continuous functions, 
therefore they are elements of the space 

C " =  C"[0, ~ )  = C  [0, oo)• C[0, oo)• ... • C[0, ~ )  
'v J 

n-times 

of vector-valued functions, continuous in the interval [0, oe). With our general methods for the 
construction of norms in product spaces we can introduce in C" many norms of whom we 
give in the following some examples. 

(a)As norm in C[0, ~ )  we take (3a) 

IIx,lL = sup Ix~(t)l i = 1 ,  2,. . . ,  n .  
O__<t< vo 

We must write sup instead of max because the interval is not closed. Further we must suppose 
that the expression on the right-hand side exists, this means x ~ ( t ) m u s t  be bounded. With (3b) 
we then construct the norm 

IIxLl| max sup [xi(t)[ (6) 
l<_i<n O_<t<~ 

in C". 
x is the solution vector x ( t ) =  (x  1 ( t ) , . . . ,  x , ( t ) ) .  
The first index on the norm refers to the norm in C[0, oe), the second to the construction 

method in C" corresponding to (2b) or (3b). 

(b) Now we choose as norm in C[0, oo) (2a) with p = 2  

I I x i L [ 2  = x . 

We must make here a further restriction upon xi(t), the integral must exist. With (3b) and p = 2 
we then have as norm in C" 
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I lx l l2 '~= ,--'if"1 x~(t)d . 

This expression is analogous to the quadratic control surface in control theory. 

(7) 

(c) We get an expression corresponding to the linear control surface if we take as C [0, ~) -norm 
(2a) with p = 1 

I'x~[[x = i o  Ixi(t)ldt 

and for C" (2b) with p = 1 

IIxll1,1: fo Ix,(,)ld,. (s) 
(d) Beside these and similar norms it is still possible to construct many other norms with the 
aid of different weight functions which must be continuous and positive in [0, ~ ) .  The time 
weighted control functions are the most important examples. 

4. Optimal Design of Systems 

The right-hand sides of equations (4) depend not only of 11, x2 . . . . .  x,  and t, but also of some 
parameters of the system, such as spring and damping parameters or impedances. These quanti- 
ties can themselves be functions of the variables Xl . . . . .  x,  or the time t. The behaviour of a 
system will depend of the size of these parameters. 

We suppose the system (4) to be in such a form that the function x - -0  corresponds to the 
equilibrium state with regard to which the behaviour of the system shall be examined. 

When disturbances characterized through the initial conditions (5) act on the system, the 
deviation from the state x-- 0 should be small in some sense. If the above mentioned parameters 
are chosen in such a way that for fixed initial values the state x = 0 is best approximated in a 
certain norm by the solution of (4), we call the system optimal with respect to this norm. For 
optimal design we have thus to vary the parameters till the expression II x -0 l l  --Jl xll is a mini- 
mum. This is a nonlinear approximation problem for the function identical to zero. 

Here we must point out two facts. First, the optimal solution will always depend on the chosen 
norm, and secondly, it will depend on the initial values. To illustrate the second fact we treat the 
very simple example of a damped vibrating point mass. We set the mass and the spring constant 
to unity, the damping constant is 2D, x is the deflection of the mass point. The equation in the 
usual form reads 

5~+2D5+x = 0 

with initial conditions 

x ( 0 ) = x 0 ,  2 ( 0 ) = 2 o .  

In our terminology of equations (4) we have with 

x = (11, 12)= (x, 5) 

21 = 12 (9) 

22 = - 2 D x  z - x  1 

and 
X1 (0)~-~" X10,  X2(0) ~ X20 �9 

For the optimization we take the norm (7) 

= [  /O+x IOld  
j o  
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and obtain 

i 2 z 
(11x112,2) 2 = x2oD+xloX2o + ~-O ( X l o + X 2 O )  �9 (lO) 

D is the only parameter to be varied. For  the minimum value of (10) this gives 

2 2 
D 2 - X l o + X 2 o  

2X~o (11) 

This shows the dependence of the initial conditions. But there is yet another difficulty. For  
x2o =0  we obtain from (11) the reasonable value D = 1/v/2. But for Xlo tending to zero, D tends 
to infinity. The solution for this limiting case is no longer continuous. This result is a consequence 
of the well known fact that C" is not a complete space if furnished with the norm (7) [2]. 

5. Possibility to Deliver from the Initial Conditions 

In many cases one knows a priori what sort of disturbances acts on the system. It is then reason- 
able to choose the corresponding initial conditions for optimization. But often the perturbations 
are unknown and an optimization independent of the initial values is desired. We confine 
ourselves to the case when (4) is a linear system with constant coefficients. It can then be written 
a s  

2 = Ax ,  (4a) 

A being a real square n x n matrix with elements a~k. The solution of this system with initial 
conditions (5) is [1] 

x = eatxo, (12) 

xo is an element of the space R" with norm IIx011R", x is from C" with norm Ilxll c". Depending of 
the norm we must eventually restrict x to a subspace of C" to guarantee the existence of the 
norm. The expression (12) can be interpreted as a continuous linear transformation between 
the two spaces R" and C', and e at as a continuous linear operator. Such operators are themselves 

�9 elements of a linear space, say LC(R", C"), where in the following way a norm is introduced [2] 

Ilea'llLC= sup I[ea'x~ = sup []ea'x01l c". (13) 
xo,O rlXol["" IIxo11=1 

Between the norms the inequality 

[IxlI c" _~ jleAtll Lc Ilxoll R" 

is valid. 
For  optimal design we minimize now the expression Ileatll Lc. From this follows an optimal 

set of parameters, the elements ai, of A or functions of them, which depend of the norm in 
LC (R", C"), i.e. the norms in R" and C", but no longer of the initial values Xo. Here the optimiza- 
tion can also be interpreted as an approximation of the 0-matrix in the space LC(R", C'). 
Since t[eAt[[ does not depend linearly of the ai,, it is a nonlinear problem. Taking for x0 and x the 
norms (2) with p = 2  and (7) respectively, the norm in LC(R', C") is 

]]eat,l=[p(foeaT%atdt)] ~ (14) 

A T is the transpose of A, p(B)=max [2il is the spectral radius of the matrix B whose eigen- 

values are 2~. Naturally we have to take for granted the existence of the integral in (14). 
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6. Conclusions 

With the concept of  vector space norms it is possible to give a systematic t reatment of the 
optimal design problem of discrete systems. The choice of the adequate norm depends on the 
concrete problem and is a mainly technical question. Just the same must be said about  the 
initial conditions to be chosen if one uses the method of section 4. 

Finally we remark that the investigations of section 4 can be carried out in metric spaces, too. 
But since this does not lead to new aspects, we took the more familiar notion o fno rmed  linear 
spaces, also with regard to section 5. 
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